Geoffrey Attardo: Targeting the Reproductive Cycle of the Tsetse Fly

It's an exciting project and a crucial one.  

UC Davis medical entomologist-geneticist Geoffrey Attardo, a global authority on tsetse flies, serves as the principal investigator of a research project at the Lawrence Berkeley National Laboratory (Berkeley Lab) that involves scanning the entire reproductive cycle of the fly.  

Attardo and other members of the research team are exploring the intact organs and tissues of tsetse flies using a powerful 3D X-ray imaging technique. The study, “Unraveling Intersexual Interactions in Tsetse”), is funded by the National Institute of Allergy and Infectious Diseases (NAIAD) of the National Institutes of Health.

“We started this project in 2019 and the work is ongoing,” said Attardo, an assistant professor in the UC Davis Department of Entomology and Nematology and chair of the Designated Emphasis in the Biology of Vector Borne Diseases. “We actually have scans of flies through the entire reproductive cycle, however, the segmentation is ongoing. We are working on developing ways to train artificial intelligence based software to assist us with the tissue segmentations.” 

The tsetse fly transmits the parasite that causes the deadly human and animal trypanosomiasis, better known as African sleeping sickness, says Attardo, who is featured in a recently posted article, "A Detailed Look Inside Tsetse Flies," on the Berkeley Lab website.  (See YouTube)

“This specialized reproductive biology has required dramatic modifications to the morphology of the reproductive organs in these and related flies,” according to the Berkeley Lab News Center. “Here, we use phase contrast micro-Computed Tomography (Micro-CT) to visualize these adaptations in three dimensions for the first time. These adaptations include cuticular modifications allowing increased abdominal volume, expanded abdominal and uterine musculature, reduced egg development capacity, structural features of the male seminal secretions and detailed visualization of the gland responsible for synthesis and secretion of “milk” to feed intrauterine larvae. The ability to examine these tissues within the context of the rest of the organ systems in the fly provides new functional insights into how these changes have facilitated the evolution of the mating and reproductive biology of these flies.” 

“The imaging technique provided new insights into how the flies' specialized biology governs mating and reproductive processes, including female flies' unique lactation and their delivery of a single fully developed larvae per birthing cycle – whereas most other insect species lay eggs,” according to the article. “The ALS (National Laboratory Advanced Light Source) produces X-rays and other forms of light for a broad range of simultaneous scientific experiments.”

Attardo, who specializes in medical entomology, reproductive physiology, molecular biology and genetics, says that tsetse flies resemble house flies, but are distinguished from other Diptera by their unique adaptations, including lactation and the birthing of live young. They carry only one offspring in their uterus at one time. 

The  parasite invades the central nervous system and disrupts the sleep cycle, he says.  “If not treated, the disease can result in progressive mental deterioration, coma, systemic organ failure and death.” An estimated  65 million people in 36 countries in sub-Saharan Africa are at risk for the deadly disease, according to the World Health Organization. 

Attardo led a study, published in September 2020 in the journal Insects, detailing the ALS imaging work.  The article, “Interpreting Morphological Adaptations Associated with Viviparity in the Tsetse Fly Glossina morsitans (Westwood) by Three-Dimensional Analysis,” received widespread attention. ALS experiments allow the researchers to create a detailed 3D visualizatiaon of the reproductive tissues without dissection and staining processes that introduce damage to the delicate samples.

“We want to understand what changes are happening during this process, how the process is being mediated, and if it can be manipulated to artificially repress females in the wild from mating,” Attardo told the Berkeley Lab News Center.

The Berkeley Lab is a multiprogram science lab in the national laboratory system supported by the U.S. Department of Energy through its Office of Science.

In his UC Davis lab, Attardo researches one of 35 tsetse fly species, Glossina morsitans morsitans, which prefers feeding on cattle to humans. Its strong mouthparts can easily puncture the tough cattle hide. In his lab, he feeds them warm cow blood.

As Attardo says on his website: "Arthropod vectored diseases cause more than 1 billion cases of illness and over 1 million deaths in humans each year. My work centers on understanding the reproductive biology of insect vectors of human disease. The goal of this work is to develop a detailed understanding of the molecular biology and physiology of these insects and to exploit this information to control these insects and the diseases they transmit. I use molecular biology and biochemical techniques in my research to address these questions. I also incorporate new technologies such as high throughput DNA sequencing and metabolomics which expand beyond the capabilities of traditional molecular techniques to understand the biology of these organisms at a systems level."

The UC Davis scientist hopes "to use the knowledge gained from these studies to improve current vector control strategies and to develop new strategies that disrupt the reproduction of these disease vectors."

Attardo holds a doctorate in genetics from Michigan State University, where he researched the molecular biology of mosquito reproduction in the lab of Alexander. Prior to joining the UC Davis faculty in 2017, Attardo worked for 13 years in the Department of Epidemiology of Microbial Diseases at the Yale School of Public Health, first as a postdoctoral associate and then as a research scientist studying the reproductive biology of tsetse flies.